Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649558

RESUMO

Hepatoblastoma stands as the most prevalent liver cancer in the pediatric population. Characterized by a low mutational burden, chromosomal and epigenetic alterations are key drivers of its tumorigenesis. Transcriptome analysis is a powerful tool for unraveling the molecular intricacies of hepatoblastoma, shedding light on the effects of genetic and epigenetic changes on gene expression. In this study conducted in Brazilian patients, an in-depth whole transcriptome analysis was performed on 14 primary hepatoblastomas, compared to control liver tissues. The analysis unveiled 1,492 differentially expressed genes (1,031 upregulated and 461 downregulated), including 920 protein-coding genes (62%). Upregulated biological processes were linked to cell differentiation, signaling, morphogenesis, and development, involving known hepatoblastoma-associated genes (DLK1, MEG3, HDAC2, TET1, HMGA2, DKK1, DKK4), alongside with novel findings (GYNG4, CDH3, and TNFRSF19). Downregulated processes predominantly centered around oxidation and metabolism, affecting amines, nicotinamides, and lipids, featuring novel discoveries like the repression of SYT7, TTC36, THRSP, CCND1, GCK and CAMK2B. Two genes, which displayed a concordant pattern of DNA methylation alteration in their promoter regions and dysregulation in the transcriptome, were further validated by RT-qPCR: the upregulated TNFRSF19, a key gene in the embryonic development, and the repressed THRSP, connected to lipid metabolism. Furthermore, based on protein-protein interaction analysis, we identified genes holding central positions in the network, such as HDAC2, CCND1, GCK, and CAMK2B, among others, that emerged as prime candidates warranting functional validation in future studies. Notably, a significant dysregulation of non-coding RNAs (ncRNAs), predominantly upregulated transcripts, was observed, with 42% of the top 50 highly expressed genes being ncRNAs. An integrative miRNA-mRNA analysis revealed crucial biological processes associated with metabolism, oxidation reactions of lipids and carbohydrates, and methylation-dependent chromatin silencing. In particular, four upregulated miRNAs (miR-186, miR-214, miR-377, and miR-494) played a pivotal role in the network, potentially targeting multiple protein-coding transcripts, including CCND1 and CAMK2B. In summary, our transcriptome analysis highlighted disrupted embryonic development as well as metabolic pathways, particularly those involving lipids, emphasizing the emerging role of ncRNAs as epigenetic regulators in hepatoblastomas. These findings provide insights into the complexity of the hepatoblastoma transcriptome and identify potential targets for future therapeutic interventions.

2.
Appl Microbiol Biotechnol ; 107(21): 6573-6589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658163

RESUMO

Spathaspora passalidarum is a xylose-fermenting microorganism promising for the fermentation of lignocellulosic hydrolysates. This yeast is more sensitive to ethanol than Saccharomyces cerevisiae for unclear reasons. An RNA-seq experiment was performed to identify transcriptional changes in S. passalidarum in response to ethanol and gain insights into this phenotype. The results showed the upregulation of genes associated with translation and the downregulation of genes encoding proteins involved in lipid metabolism, transporters, and enzymes from glycolysis and fermentation pathways. Our results also revealed that genes encoding heat-shock proteins and involved in antioxidant response were upregulated, whereas the osmotic stress response of S. passalidarum appears impaired under ethanol stress. A pseudohyphal morphology of S. passalidarum colonies was observed in response to ethanol stress, which suggests that ethanol induces a misperception of nitrogen availability in the environment. Changes in the yeast fatty acid profile were observed only after 12 h of ethanol exposure, coinciding with the recovery of the yeast xylose consumption ability. These findings suggest that the lack of fast membrane lipid adjustments, the halt in nutrient absorption and cellular metabolism, and the failure to induce the expression of osmotic stress-responsive genes are the main aspects underlying the low ethanol tolerance of S. passalidarum. KEY POINTS: • Ethanol stress halts Spathaspora passalidarum metabolism and fermentation • Genes encoding nutrient transporters showed downregulation under ethanol stress • Ethanol induces a pseudohyphal cell shape, suggesting a misperception of nutrients.

3.
Appl Microbiol Biotechnol ; 107(16): 5161-5178, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37389589

RESUMO

Kefir is a fermented beverage made of a symbiotic microbial community that stands out for health benefits. Although its microbial profile is still little explored, its effects on modulation of gut microbiota and production of short-chain fatty acids (SCFAs) seems to act by improving brain health. This work aimed to analyze the microbiota profile of milk kefir and its effect on metabolism, oxidative stress, and in the microbiota-gut-brain axis in a murine model. The experimental design was carried out using C57BL-6 mice (n = 20) subdivided into groups that received 0.1 mL water or 0.1 mL (10% w/v) kefir. The kefir proceeded to maturation for 48 h, and then it was orally administered, via gavage, to the animals for 4 weeks. Physicochemical, microbiological, antioxidant analyzes, and microbial profiling of milk kefir beverage were performed as well as growth parameters, food intake, serum markers, oxidative stress, antioxidant enzymes, SCFAs, and metabarcoding were analyzed in the mice. Milk kefir had 76.64 ± 0.42% of free radical scavenging and the microbiota composed primarily by the genus Comamonas. Moreover, kefir increased catalase and superoxide dismutase (colon), and SCFAs in feces (butyrate), and in the brain (butyrate and propionate). Kefir reduced triglycerides, uric acid, and affected the microbiome of animals increasing fecal butyrate-producing bacteria (Lachnospiraceae and Lachnoclostridium). Our results on the brain and fecal SCFAs and the antioxidant effect found were associated with the change in the gut microbiota caused by kefir, which indicates that kefir positively influences the gut-microbiota-brain axis and contributes to the preservation of gut and brain health. KEY POINTS: • Milk kefir modulates fecal microbiota and SCFA production in brain and colon. • Kefir treatment increases the abundance of SCFA-producing bacteria. • Milk kefir increases antioxidant enzymes and influences the metabolism of mice.


Assuntos
Kefir , Microbiota , Camundongos , Animais , Kefir/microbiologia , Leite/metabolismo , Antioxidantes , Camundongos Endogâmicos C57BL , Fezes/microbiologia , Ácidos Graxos Voláteis/metabolismo , Butiratos , Encéfalo/metabolismo
4.
Molecules ; 28(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375373

RESUMO

The interest in the consumption of edible flowers has increased since they represent a rich source of bioactive compounds, which are significantly beneficial to human health. The objective of this research was to access the bioactive compounds and antioxidant and cytotoxic properties of unconventional alternative edible flowers of Hibiscus acetosella Welw. Ex Hiern. The edible flowers presented pH value of 2.8 ± 0.00, soluble solids content of 3.4 ± 0.0 °Brix, high moisture content of about 91.8 ± 0.3%, carbohydrates (6.9 ± 1.2%), lipids (0.90 ± 0.17%), ashes (0.4 ± 0.0%), and not detectable protein. The evaluation of the scavenging activity of free radicals, such as 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), of the flower extract was better than the results observed for other edible flowers (507.8 ± 2.7 µM TE and 783.9 ± 30.8 µM TE, respectively) as well as the total phenolic composition (TPC) value (568.8 ± 0.8 mg GAE/g). These flowers are rich in organic acids and phenolic compounds, mainly myricetin, and quercetin derivatives, kaempferol, and anthocyanins. The extract showed no cytotoxicity for the cell lineages used, suggesting that the extract has no directly harmful effects to cells. The important bioactive compound identified in this study makes this flower especially relevant in the healthy food area due to its nutraceutical potential without showing cytotoxicity.


Assuntos
Antocianinas , Hibiscus , Humanos , Antocianinas/química , Antioxidantes/química , Fenóis/química , Extratos Vegetais/química , Flores/química
5.
Foods ; 12(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36900609

RESUMO

Gut microbiota imbalance is associated with the occurrence of metabolic diseases such as obesity. Thus, its modulation is a promising strategy to restore gut microbiota and improve intestinal health in the obese. This paper examines the role of probiotics, antimicrobials, and diet in modulating gut microbiota and improving intestinal health. Accordingly, obesity was induced in C57BL/6J mice, after which they were redistributed and fed with an obesogenic diet (intervention A) or standard AIN-93 diet (intervention B). Concomitantly, all the groups underwent a treatment phase with Lactobacillus gasseri LG-G12, ceftriaxone, or ceftriaxone followed by L. gasseri LG-G12. At the end of the experimental period, the following analysis was conducted: metataxonomic analysis, functional profiling of gut microbiota, intestinal permeability, and caecal concentration of short-chain fatty acids. High-fat diet impaired bacterial diversity/richness, which was counteracted in association with L. gasseri LG-G12 and the AIN-93 diet. Additionally, SCFA-producing bacteria were negatively correlated with high intestinal permeability parameters, which was further confirmed via functional profile prediction of the gut microbiota. A novel perspective on anti-obesity probiotics is presented by these findings based on the improvement of intestinal health irrespective of undergoing antimicrobial therapy or not.

6.
Food Funct ; 14(8): 3804-3814, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37000521

RESUMO

Kefir has been suggested as a possible bacterial prophylaxis against Salmonella and IL-10 production seems to be crucial in the pathogenesis of salmonellosis in mice. This study evaluated the role of IL-10 in the inflammation and gut microbiome in mice consuming milk kefir and orally challenged with Salmonella enterica serovar Typhimurium. C57BL wild type (WT) (n = 40) and C57BL IL-10-/- (KO) (n = 40) mice were subdivided into eight experimental groups either treated or not with kefir. In the first 15 days, the water groups received filtered water (0.1 mL) while the kefir groups received milk kefir (10% w/v) orally by gavage. Then, two groups of each strain received a single dose (0.1 mL) of the inoculum of S. Typhimurium (ATCC 14028, dose: 106 CFU mL-1). After four weeks, the animals were euthanized to remove the colon for further analysis. Kefir prevented systemic infections only in IL-10-/- mice, which were able to survive, regulate cytokines, and control colon inflammation. The abundance in Lachnospiraceae and Roseburia, and also the higher SCFA production in the pre-infection, showed that kefir has a role in intestinal health and protection, colonizing and offering competition for nutrients with the pathogen as well as acting in the regulation of salmonella infectivity only in the absence of IL-10. These results demonstrate the role of IL-10 in the prognosis of salmonellosis and how milk kefir can be used in acute infections.


Assuntos
Microbioma Gastrointestinal , Kefir , Infecções por Salmonella , Camundongos , Animais , Leite , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Infecções por Salmonella/prevenção & controle , Inflamação , Salmonella typhimurium/genética
7.
Mol Divers ; 27(1): 281-297, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35441971

RESUMO

Botrytis cinerea, Rhizoctonia solani and Hemileia vastatrix are three species of phytopathogenic fungi behind major crop losses worldwide. These have been selected as target models for testing the fungicide potential of a series of bis(ylidene) cyclohexanones. Although some compounds of this chemical class are known to have inhibitory activity against human pathogens, they have never been explored for the control of phytopathogens until now. In the present work, bis(ylidene) cyclohexanones were synthesized through simple, fast and low-cost base- or acid-catalyzed aldol condensation reaction and tested in vitro against B. cinerea, R. solani and H. vastatrix. bis(pyridylmethylene) cyclohexanones showed the highest activity against the target fungi. When tested at 200 nmol per mycelial plug against R. solani., these compounds completely inhibited the mycelial growth, and the most active bis(pyridylmethylene) cyclohexanone compound had an IC50 of 155.5 nmol plug-1. Additionally, bis(pyridylmethylene) cyclohexanones completely inhibited urediniospore germination of H. vastatrix, at 125 µmol L-1. The most active bis(pyridylmethylene) cyclohexanone had an IC50 value of 4.8 µmol L-1, which was estimated as approximately 2.6 times lower than that found for the copper oxychloride-based fungicide, used as control. Additionally, these substances had a low cytotoxicity against the mammalian Vero cell line. Finally, in silico calculations indicated that these compounds present physicochemical parameters regarded as suitable for agrochemicals. Bis(ylidene) cyclohexanones may constitute promising candidates for the development of novel antifungal agents for the control of relevant fungal diseases in agriculture.


Assuntos
Antifúngicos , Fungicidas Industriais , Humanos , Cicloexanonas , Doenças das Plantas/microbiologia , Fungos , Plantas
8.
Front Microbiol ; 13: 918706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090116

RESUMO

Mastitis, mainly caused by bacterial intramammary infections, is the main problem in the breeding of dairy animals. The inflammations of the mammary gland is separated by types of mastitis, being subclinical, clinical, and the most severe, gangrenous mastitis. Here, we used 16S rRNA amplicon sequencing to characterize the bacterial microbiota of goat milk in the different types of goat mastitis caused by bacteria. We used 72 goat milk samples from a region of the state of Minas Gerais in Brazil, of which 12 were from clinically healthy animals, 42 from animals diagnosed with subclinical mastitis, 16 from animals with clinical mastitis, and 2 from animals with gangrenous mastitis. The group related to gangrenous mastitis was the most divergent in terms of alpha and beta diversity. The most abundant genus among samples of the groups was Staphylococcus spp., and we found a high abundance of Mycoplasma sp. in the milk of animals diagnosed with clinical mastitis. The most statistically relevant microorganisms among the groups were Prevotella sp., Ruminococcaceae, Prevotella ruminicola sp., and Providencia sp. We highlight a new association of bacterial agents in gangrenous mastitis among Escherichia sp./Shigella sp. and Enterococcus sp. and provide the second report of the genus Alkalibacterium sp., in milk samples. Only the taxa Staphylococcus sp., Bacteroides sp., Enterococcus, and Brevidabacterium sp., were present in all groups. The superpathway of L-tryptophan biosynthesis metabolites and the sucrose degradation III (sucrose invertase) pathway were the most prominent ones among the groups. In this study, we demonstrate how a rich microbiota of goat milk from healthy animals can be altered during the aggravation of different types of mastitis, in addition to demonstrating new bacterial genera in milk not previously detected in other studies as well as new associations between agents.

9.
Life Sci ; 307: 120849, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35926588

RESUMO

The serine/arginine-rich protein kinases (SRPK) specifically phosphorylate their substrates at RS-rich dipeptides, which are abundantly found in SR splicing factors. SRPK are classically known for their ability to affect the splicing and expression of gene isoforms commonly implicated in cancer and diseases associated with infectious processes. Non-splicing functions have also been attributed to SRPK, which highlight their functional plasticity and relevance as therapeutic targets for pharmacological intervention. In this sense, different SRPK inhibitors have been developed, such as the well-known SRPIN340 and its derivatives, with anticancer and antiviral activities. Here we evaluated the potential immunomodulatory activity of SRPIN340 and three trifluoromethyl arylamide derivatives. In in vitro analysis with RAW 264.7 macrophages and primary splenocytes, all the compounds modulated the expression of immune response mediators and antigen-presentation molecules related to a tendency for M2 macrophage polarization. Immunization experiments were carried out in mice to evaluate their potential as vaccine immunostimulants. When administrated alone, the compounds altered the expression of immune factors at the injection site and did not produce macroscopic or microscopic local reactions. In addition, when prepared as an adjuvant with inactivated EHV-1 antigens, all the compounds increased the anti-EHV-1 neutralizing antibody titers, a change that is consistent with an increased Th2 response. These findings demonstrate that SRPIN340 and its derivatives exhibit a noticeable capacity to modulate innate and adaptative immune cells, disclosing their potential to be used as vaccine adjuvants or in immunotherapies.


Assuntos
Adjuvantes de Vacinas , Vacinas , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes , Antivirais , Arginina , Dipeptídeos , Imunidade , Camundongos , Niacinamida/análogos & derivados , Piperidinas , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases , Fatores de Processamento de RNA , Serina
10.
Appl Microbiol Biotechnol ; 106(12): 4627-4641, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35759035

RESUMO

Tegumentary leishmaniasis (TL) is a disease of high severity and incidence in Brazil, and Leishmania braziliensis is its main etiological agent. The inefficiency of control measures, such as high toxicity and costs of current treatments and the lack of effective immunoprophylactic strategies, makes the development of vaccines indispensable and imminent. In this light, the present work developed a gene encoding multiple T-cell (CD4+/CD8+) epitope, derived from conserved proteins found in Leishmania species and associated with TL, to generate a chimeric protein (rMEP/TL) and compose a vaccine formulation. For this, six T-cell epitopes were selected by immunoinformatics approaches from proteins present in the amastigote stage and associated with host-parasite interactions. The following formulations were then tested in an L. braziliensis murine infection model: rMEP/TL in saline or associated with MPLA-PHAD®. Our data revealed that, after immunization (three doses; 14-day intervals) and subsequent challenging, rMEP/TL and rMEP/TL + MPLA-vaccinated mice showed an increased production of key immunological biomarkers of protection, such as IgG2a, IgG2a/IgG1, NO, CD4+, and CD8+ T-cells with IFN-γ and TNF-α production, associated with a reduction in CD4+IL-10+ and CD8+IL-10+ T-cells. Vaccines also induced the development of central (CD44highCD62Lhigh) and effector (CD44highCD62Llow) memory of CD4+ and CD8+ T-cells. These findings, associated with the observation of lower rates of parasite burdens in the vaccinated groups, when compared to the control groups, suggest that immunization with rMEP/TL and, preferably, associated with an adjuvant, may be considered an effective tool to prevent TL. KEY POINTS: • Rational design approaches for vaccine development. • Central and effector memory of CD4+ and CD8+ T-cells. • Vaccine comprised of rMEP/TL plus MPLA as an effective tool to prevent TL.


Assuntos
Vacinas contra Leishmaniose , Leishmaniose , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T/genética , Imunoglobulina G , Interleucina-10/metabolismo , Leishmaniose/prevenção & controle , Vacinas contra Leishmaniose/genética , Camundongos , Camundongos Endogâmicos BALB C
11.
BMC Vet Res ; 18(1): 115, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331225

RESUMO

Staphylococcus aureus is a leading cause of bovine mastitis worldwide. Despite some improved understanding of disease pathogenesis, progress towards new methods for the control of intramammary infections (IMI) has been limited, particularly in the field of vaccination. Although herd management programs have helped to reduce the number of clinical cases, S. aureus mastitis remains a major disease burden. This review summarizes the past 16 years of research on bovine S. aureus population genetics, and molecular pathogenesis that have been conducted worldwide. We describe the diversity of S. aureus associated with bovine mastitis and the geographical distribution of S. aureus clones in different continents. We also describe studies investigating the evolution of bovine S. aureus and the importance of host-adaptation in its emergence as a mastitis pathogen. The available information on the prevalence of virulence determinants and their functional relevance during the pathogenesis of bovine mastitis are also discussed. Although traits such as biofilm formation and innate immune evasion are critical for the persistence of bacteria, the current understanding of the key host-pathogen interactions that determine the outcome of S. aureus IMI is very limited. We suggest that greater investment in research into the genetic and molecular basis of bovine S. aureus pathogenesis is essential for the identification of novel therapeutic and vaccine targets.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Infecções Estafilocócicas , Animais , Bovinos , Feminino , Mastite Bovina/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/genética , Fatores de Virulência/genética
12.
Appl Biochem Biotechnol ; 194(7): 2946-2967, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35312974

RESUMO

Filamentous fungi are prolific producers of carbohydrate-active enzymes (CAZymes) and important agents that carry out plant cell wall degradation in natural environments. The number of fungal species is frequently reported in the millions range, with a huge diversity and genetic variability, reflecting on a vast repertoire of CAZymes that these organisms can produce. In this study, we evaluated the ability of previously selected ascomycete and basidiomycete fungi to produce plant cell wall-degrading enzyme (PCWDE) activities and the potential of the culture supernatants to increase the efficiency of the Cellic® CTec2/HTec2 for steam-exploded sugarcane straw saccharification. The culture supernatant of Penicillium ochrochloron RLS11 showed a promising supplementation effect on Cellic® CTec2/HTec2, and we conducted the whole-genome sequencing and proteomic analysis for this fungus. The size of the assembled genome was 38.06 Mbp, and a total of 12,015 protein-coding genes were identified. The repertoire of PCWDE-coding genes was comparatively high among Penicillium spp. and showed an expansion in important cellulases and xylanases families, such as GH3, GH6, GH7, and GH11. The proteomic analysis indicated cellulases that probably enhanced the biomass saccharification performance of the Cellic® CTec2/HTec2, which included enzymes from GH3, GH6, and GH7 families.


Assuntos
Ascomicetos , Celulases , Penicillium , Saccharum , Ascomicetos/metabolismo , Carboidratos , Celulases/genética , Celulases/metabolismo , Proteômica , Saccharum/metabolismo , Secretoma
13.
Sci Rep ; 11(1): 19644, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608228

RESUMO

To date, the investigation of genes involved in Al resistance has focused mainly on microarrays and short periods of Al exposure. We investigated genes involved in the global response under Al stress by tracking the expression profile of two inbred popcorn lines with different Al sensitivity during 72 h of Al stress. A total of 1003 differentially expressed genes were identified in the Al-sensitive line, and 1751 were identified in the Al-resistant line, of which 273 were shared in both lines. Genes in the category of "response to abiotic stress" were present in both lines, but there was a higher number in the Al-resistant line. Transcription factors, genes involved in fatty acid biosynthesis, and genes involved in cell wall modifications were also detected. In the Al-resistant line, GST6 was identified as one of the key hub genes by co-expression network analysis, and ABC6 may play a role in the downstream regulation of CASP-like 5. In addition, we suggest a class of SWEET transporters that might be involved in the regulation of vacuolar sugar storage and may serve as mechanisms for Al resistance. The results and conclusions expand our understanding of the complex mechanisms involved in Al toxicity and provide a platform for future functional analyses and genomic studies of Al stress in popcorn.


Assuntos
Alumínio/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma , Zea mays/genética , Zea mays/metabolismo , Alumínio/toxicidade , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Anotação de Sequência Molecular , Melhoramento Vegetal
14.
Arch Microbiol ; 203(9): 5345-5361, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34387704

RESUMO

Aspergillus sp. A31 and Curvularia geniculata P1 are endophytes that colonize the roots of Aeschynomene fluminensis Vell. and Polygonum acuminatum Kunth. in humid environments contaminated with mercury. The two strains mitigated mercury toxicity and promoted Oryza sativa L growth. C. geniculata P1 stood out for increasing the host biomass by fourfold and reducing the negative effects of the metal on photosynthesis. Assembling and annotation of Aspergillus sp. A31 and C. geniculata P1 genomes resulted in 28.60 Mb (CG% 53.1; 10,312 coding DNA sequences) and 32.92 Mb (CG% 50.72; 8,692 coding DNA sequences), respectively. Twelve and 27 genomes of Curvularia/Bipolaris and Aspergillus were selected for phylogenomic analyzes, respectively. Phylogenetic analysis inferred the separation of species from the genus Curvularia and Bipolaris into different clades, and the separation of species from the genus Aspergillus into three clades; the species were distinguished by occupied niche. The genomes had essential gene clusters for the adaptation of microorganisms to high metal concentrations, such as proteins of the phytoquelatin-metal complex (GO: 0090423), metal ion binders (GO: 0046872), ABC transporters (GO: 0042626), ATPase transporters (GO: 0016887), and genes related to response to reactive oxygen species (GO: 0000302) and oxidative stress (GO: 0006979). The results reported here help to understand the unique regulatory mechanisms of mercury tolerance and plant development.


Assuntos
Mercúrio , Oryza , Aspergillus/genética , Curvularia , Endófitos , Mercúrio/toxicidade , Filogenia , Raízes de Plantas
15.
3 Biotech ; 11(9): 396, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34422537

RESUMO

Actinobacteria is a phylum composed of aerobic, Gram-positive, and filamentous bacteria with a broad spectrum of biological activity, including antioxidant, antitumor, and antibiotic. The crude extract of Streptomyces griseocarneus R132 was fractionated on a C18 silica column and the isolated compound was identified by 1H and 13C nuclear magnetic resonance as 3-(phenylprop-2-enoic acid), also known as trans-cinnamic acid. Antimicrobial activity against human pathogens was assayed in vitro (disk-diffusion qualitative test) and in vivo using Galleria mellonella larvae (RT-qPCR). The methanol fractions 132-F30%, 132-F50%, 132-F70%, and 132-F100% inhibited the Escherichia coli (ATCC 25922) and Staphylococcus aureus (MRSA) growth in vitro the most effectively. Compared with the untreated control (60-80% of larvae death), the fractions and isolated trans-cinnamic acid increased the survival rate and modulated the immune system of G. mellonella larvae infected with pathogenic microorganisms. The anti-infection effect of the S. griseocarneus R132 fermentation product led us to sequence its genome, which was assembled and annotated using the Rast and antiSMASH platforms. The assembled genome consisted of 227 scaffolds represented on a linear chromosome of 8.85 Mb and 71.3% of GC. We detected conserved domains typical of enzymes that produce molecules with biological activity, such as polyketides and non-ribosomal and ribosomal peptides, indicating a great potential for obtaining new antibiotics and molecules with biotechnological application. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02942-1.

16.
Appl Microbiol Biotechnol ; 105(18): 6805-6817, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34432132

RESUMO

Leishmania braziliensis is responsible for most cases of human tegumentary leishmaniasis (HTL) and has caused a wide range of clinical manifestations, including cutaneous (CL) and mucosal leishmaniasis (ML). The diagnosis is based on criteria that consider epidemiological data, clinical findings, and laboratory tests and is hard to establish. For laboratory tests, none of the assays available can be considered gold standards for disease detection. In addition, the Montenegro skin test, essential to supporting infectologists in the clinical management of the disease, is no longer available in Brazil. Thus, the aim of this study was to develop new targets to be used in diagnostic tests for HTL. In the first step, we carried out two-dimensional gel electrophoresis, followed by mass spectrometry, combined with heat map analysis and immunoproteomics approach, and disclosed eight proteins expressed in the amastigote stage specifically recognized by serum from CL and ML patients. A chimeric protein was designed based on the combination of thirteen linear B-cell epitopes, identified by immunoinformatics analysis, from L. braziliensis proteins. Our results showed that the strategy used in this work was successful in developing an antigen to be used in immunological assays (100.0% sensitivity and specificity) in the detection of HTL cases and in comparison with results obtained from an ELISA using soluble L. braziliensis antigen (SLb-Antigen) and immunofluorescence assay (Bio-Manguinhos/FIOCRUZ). The present technology opens the door for its use in field exams by means of an immunochromatographic test, which will be even more helpful in regions without laboratory structures.Key points• Rational strategy to develop antigens.• Integration between immunoproteomic and immunoinformatics analysis.• Chimeric protein shows high performance in HTL diagnosis.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Ensaio de Imunoadsorção Enzimática , Humanos , Leishmaniose Cutânea/diagnóstico , Proteômica , Proteínas Recombinantes de Fusão
17.
J Anim Sci Biotechnol ; 12(1): 79, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34261531

RESUMO

BACKGROUND: Ruminants rely upon a complex community of microbes in their rumen to convert host-indigestible feed into nutrients. However, little is known about the association between the rumen microbiota and feed efficiency traits in Nellore (Bos indicus) cattle, a breed of major economic importance to the global beef market. Here, we compare the composition of the bacterial, archaeal and fungal communities in the rumen of Nellore steers with high and low feed efficiency (FE) phenotypes, as measured by residual feed intake (RFI). RESULTS: The Firmicutes to Bacteroidetes ratio was significantly higher (P < 0.05) in positive-RFI steers (p-RFI, low feed efficiency) than in negative-RFI (n-RFI, high feed efficiency) steers. The differences in bacterial composition from steers with high and low FE were mainly associated with members of the families Lachnospiraceae, Ruminococcaceae and Christensenellaceae, as well as the genus Prevotella. Archaeal community richness was lower (P < 0.05) in p-RFI than in n-RFI steers and the genus Methanobrevibacter was either increased or exclusive of p-RFI steers. The fungal genus Buwchfawromyces was more abundant in the rumen solid fraction of n-RFI steers (P < 0.05) and a highly abundant OTU belonging to the genus Piromyces was also increased in the rumen microbiota of high-efficiency steers. However, analysis of rumen fermentation variables and functional predictions indicated similar metabolic outputs for the microbiota of distinct FE groups. CONCLUSIONS: Our results demonstrate that differences in the ruminal microbiota of high and low FE Nellore steers comprise specific taxa from the bacterial, archaeal and fungal communities. Biomarker OTUs belonging to the genus Piromyces were identified in animals showing high feed efficiency, whereas among archaea, Methanobrevibacter was associated with steers classified as p-RFI. The identification of specific RFI-associated microorganisms in Nellore steers could guide further studies targeting the isolation and functional characterization of rumen microbes potentially important for the energy-harvesting efficiency of ruminants.

18.
Probiotics Antimicrob Proteins ; 13(6): 1621-1631, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33818711

RESUMO

The development of adjuvant therapies for obesity treatment is justified by the high prevalence of this disease worldwide, and the relationship between obesity and intestinal microbiota is a promising target for obesity treatment. Therefore, this study aimed at investigating the adjuvant treatment of obesity through the use of potential probiotics and antibiotics, either separately or sequentially. In the first phase of the experiment, animals had diet-induced obesity with consumption of a high saturated fat diet and a fructose solution. After this period, there was a reduction in caloric supply, that is the conventional treatment of obesity, and the animals were divided into 5 experimental groups: control group (G1), obese group (G2), potential probiotic group (G3), antibiotic group (G4), and antibiotic followed by potential probiotic group (G5). The adjuvant treatments lasted 4 weeks and were administered daily, via gavage: Animals in G1 and G2 received distilled water, the G3 obtained Lactobacillus gasseri LG-G12, and the G4 received ceftriaxone. The G5 received ceftriaxone for 2 weeks, followed by the offer of Lactobacillus gasseri LG-G12 for another 2 weeks. Parameters related to obesity, such as biometric measurements, food consumption, biochemical tests, histological assessments, short-chain fatty acids concentration, and composition of the intestinal microbiota, were analyzed. The treatment with caloric restriction and sequential supply of antibiotics and potential probiotics was able to reduce biometric measures, increase brown adipose tissue, and alter the intestinal microbiota phyla, standing out as a promising treatment for obesity.


Assuntos
Antibacterianos/uso terapêutico , Ceftriaxona/uso terapêutico , Microbioma Gastrointestinal , Obesidade , Probióticos , Tecido Adiposo Marrom , Biometria , Humanos , Obesidade/tratamento farmacológico
19.
J Proteomics ; 236: 104121, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33540065

RESUMO

The phytopathogenic fungus Chrysoporthe cubensis has a great capacity to produce highly efficient enzymes for the hydrolysis of lignocellulosic biomass. The bioinfosecretome of C. cubensis was identified by computational predictions of secreted proteins combined with protein analysis using 1D-LC-MS/MS. The in silico secretome predicted 562 putative genes capable of encoding secreted proteins, including 273 CAZymes. Proteomics analysis confirmed the existence of 313 proteins, including 137 CAZymes classified as Glycosyl Hydrolases (GH), Polysaccharide Lyases (PL), Carbohydrate Esterases (CE) and Auxiliary Activities enzymes (AA), which indicates the presence of classical and oxidative cellulolytic mechanisms. The enzymes diversity in the extract shows fungal versatility to act in complex biomasses. This study provides an insight into the lignocellulose-degradation mechanisms by C. cubensis and allows the identification of the enzymes that are potentially useful in improving industrial process of bioconversion of lignocellulose. SIGNIFICANCE: Chrysoporthe cubensis is an important deadly canker pathogen of commercially cultivated Eucalyptus species. The effective depolymerisation of the recalcitrant plant cell wall performed by this fungus is closely related to its high potential of lignocellulolytic enzymes secretion. Since the degradation of biomass occurs in nature almost exclusively by enzyme secretion systems, it is reasonable to suggest that the identification of C. cubensis lignocellulolytic enzymes is relevant in contributing to new sustainable alternatives for industrial solutions. As far as we know, this work is the first accurate proteomic evaluation of the enzymes secreted by this species of fungus. The integration of the gel-based proteomic approach, the bioinformatic prediction of the secretome and the analyses of enzymatic activity are powerful tools in the evaluation of biotechnological potential of C. cubensis in producing carbohydrate-active enzymes. In addition, analysis of the C. cubensis secretome grown in wheat bran draws attention to this plant pathogen and its extracellular enzymatic machinery, especially regarding the identification of promising new enzymes for industrial applications. The results from this work allowed for explanation and reinforce previous research that revealed C. cubensis as a strong candidate to produce enzymes to hydrolyse sugarcane bagasse and similar substrates.


Assuntos
Ascomicetos , Proteômica , Biomassa , Cromatografia Líquida , Hidrólise , Espectrometria de Massas em Tandem
20.
Probiotics Antimicrob Proteins ; 13(3): 899-913, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32865761

RESUMO

Bovicin HC5 is a peptide that has inhibitory activity against various pathogenic microorganisms and food spoilage bacteria. Aiming to improve the productivity of this bacteriocin, we evaluated several potential factors that could stimulate the synthesis of bovicin HC5 and selected variants of Streptococcus equinus (Streptococcus bovis) HC5 with enhanced bacteriocin production by adaptive laboratory evolution (ALE). The highest production of the bacteriocin (1.5-fold) was observed when Strep. equinus HC5 was cultivated with lactic acid (100 mmol/L). For the ALE experiment, Strep. equinus HC5 cells were subjected to acid-shock (pH 3.0 for 2 h) and maintained in continuous culture for approximately 140 generations (40 days) in media with lactic acid (100 mmol/L) and pH-controlled at 5.5 ± 0.2. An adapted variant was selected showing a distinct phenotype (sedimentation, pigmentation) compared with the parental strain. Bacteriocin production increased 2-fold in this adapted Strep. equinus HC5 variant, which appears to be associated with changes in the cell envelope of the adapted variant and enhanced bacteriocin release into the culture media. In addition, the adapted variant showed higher levels of expression of all bovicin HC5 biosynthetic genes compared with the parental strain during the early and late stages of growth. Results presented here indicate that ALE is a promising strategy for selecting strains of lactic acid bacteria with increased production of bacteriocins.


Assuntos
Bacteriocinas , Streptococcus bovis , Bactérias , Bacteriocinas/biossíntese , Bacteriocinas/genética , Meios de Cultura , Ácido Láctico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...